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Summary. To account for measurement error (ME) in explanatory variables, Bayesian ap-
proaches provide a flexible framework, as expert knowledge can be incorporated in the prior
distributions. Recently, integrated nested Laplace approximations have been proven to be a
computationally convenient alternative to sampling approaches for Bayesian inference in latent
Gaussian models. We show how the most common approaches to adjust for ME, the classical
and the Berkson ME, fit into this framework. This is achieved through a reformulation with aug-
mented pseudo-observations and a suitable extension of the latent Gaussian field.Two specific
classes are described, which allow for a particularly simple implementation using integrated
nested Laplace approximations. We present three applications within the framework of gener-
alized linear (mixed) models with ME. To illustrate the practical feasibility, R code is provided in
on-line supplementary material.
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1. Introduction

The existence and the effects of measurement error (ME) in statistical analyses have been rec-
ognized and discussed for more than a century; see for example Pearson (1902), Wald (1940),
Berkson (1950), Fuller (1987) and Carroll et al. (2006). The sources of ME are manifold and
imply much more than just instrumental imprecision in the measurement of physical variables,
such as length and weight, but may include for instance biases due to preferential sampling,
incomplete observations or misclassification.
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If ME is ignored, parameter estimates and confidence intervals may suffer from serious biases.
If a regression model is multivariate and some covariates can be measured with and some without
error, even the effects of the error-free measured covariates can be biased, where the direction
of the bias depends on the correlation between covariates (Carroll et al., 1985; Gleser et al.,
1987). Moreover, ME may cause a loss of power for detecting signals and connections among
variables and may mask important features of the data. Given these facts, it is surprising that
ME is often completely ignored or not treated properly. One reason might be that standard
statistical textbooks on regression often pay very little attention to this aspect, although the
problems have been recognized for a long time.

For successful error correction both the amount of error (i.e. the error variance) and the error
model need to be specified correctly. Hence, information about the underlying measurement
process is essential. Possible errors must be identified early in a study and the entire data collec-
tion process should be driven by such considerations. In recent decades, several approaches to
model and correct for ME have been proposed, such as method-of-moments corrections (Fuller,
1987), simulation extrapolation (Cook and Stefanski, 1994), regression calibration (Carroll and
Stefanski, 1990; Gleser, 1990) or Bayesian analyses (Clayton, 1992; Stephens and Dellaportas,
1992; Richardson and Gilks, 1993; Dellaportas and Stephens, 1995; Gustafson, 2004). A thor-
ough overview of current state of the art methods is given in Carroll et al. (2006) and Buonaccorsi
(2010).

In this paper, we focus on Bayesian approaches where prior knowledge, and in particular prior
uncertainty, e.g. in variance estimates, can be incorporated in the model. Up to now, posterior
marginal distributions in such ME models have been estimated by employing a Markov chain
Monte Carlo (MCMC) sampler; see for example Stephens and Dellaportas (1992) or Richardson
and Gilks (1993). The MCMC approach is very general, flexible and widely used. However, case-
specific implementation may be challenging and sampling can become rather time consuming,
although the use of generic software such as WinBugs (Lunn et al., 2000), OpenBugs (Lunn
et al., 2009), JAGS (Plummer, 2003) or MCMC samplers in R, such as MCMCpack (Martin
et al., 2011), facilitates the application of MCMC approaches.

Rue et al. (2009) proposed the integrated nested Laplace approximation (INLA) algorithm
INLA, which is an alternative to MCMC sampling for the class of latent Gaussian models. INLA
avoids sampling by accurately approximating posterior marginal distributions. Because of its
flexibility in the choice of likelihood functions and latent models, the INLA approach is also
an alternative to likelihood-based inference in particular for generalized linear mixed models
(GLMMs) (Fong et al., 2010). INLA is implemented in C and runs under Linux, Windows and
Macintosh systems via a freely available R interface (R Core Team, 2012). Models can be fitted
in short time making prior sensitivity analysis (Roos and Held, 2011) and even bootstrap studies
(see Section 5.2) feasible.

Here, we show how the most common approaches to adjust for ME, namely classical and
Berkson ME, fit into the framework of latent Gaussian models. This is achieved through a
reformulation with augmented pseudo-observations and a suitable extension of the latent field.
Two specific classes, one for a simplified form of classical ME and one for Berkson ME, which
allow for a particularly easy implementation in INLA, are also considered. We hope that our
work facilitates the access to ME problems for a broad audience and that the solution that is
presented here will stimulate the greater use of Bayesian methods for the analysis of data subject
to ME. For this, R code is provided in the on-line supplementary material.

An alternative approach towards approximate inference in ME models is the variational
Bayes method (Bishop, 2006; Ormerod and Wand, 2010), which has been recently applied
by Pham et al. (2013) to the special case of simple (parametric and non-parametric) linear
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regression with classical ME. Variational Bayes methods provide accurate point estimates; how-
ever, certain variational approximations tend to give too narrow posterior distributions, i.e. too
optimistic uncertainty estimates. See Bishop (2006), page 467, and Rue et al. (2009), appendix
A, for illustration of this problem in the case of latent Gaussian models. Novel variational
approaches to improve on this are being actively explored; see for example Ormerod and Wand
(2012).

This paper is organized as follows. Section 2 introduces three applications from the biological
or medical field containing a linear regression combined with heteroscedastic classical error, a
logistic model with a binary error-free covariate and a model suffering from classical error, and
an overdispersed Poisson regression model with Berkson error. In Section 3 we review classical
and Berkson ME and the effects on the estimates of regression coefficients. Bayesian analysis
with INLA is introduced in Section 4, where we describe how to use this framework for model
inference in the presence of classical and Berkson ME. Section 5 presents modelling details and
the results of the three applications analysed with both the INLA and the MCMC approach.
Finally, we provide a discussion and outlook in Section 6.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Examples of measurement error problems

In this section we introduce three applications which will be analysed in detail in Section 5.
Here, we mainly describe the problems at hand and the differences in the results depending
on whether or not ME has been incorporated in the analysis. All parameter estimates in ME
models are obtained by using INLA, as outlined in detail in subsequent sections.

2.1. Inbreeding in Swiss ibex populations
We analysed data described by Bozzuto et al. (2014) on 26 Alpine ibex populations in Switzer-
land, some of them monitored over the past 100 years. The study aimed to quantify the effect of
inbreeding on populations’ intrinsic growth rates. The intrinsic growth rate yi of a population
i is the theoretical maximal rate of increase, if there are no density-dependent effects. For each
population the value yi has been estimated as a parameter of a non-linear state space model
based on time series data of abundance counts, harvest proportions and numbers of animals
released. The inbreeding coefficient xi of population i (which is often denoted as fi) is a quantity
between 0 and 1, with larger values indicating stronger inbreeding. Unfortunately, xi cannot be
measured exactly. A previous Bayesian analysis based on genotype experiments at 37 neutral
microsatellite loci provided estimates for xi, denoted by wi, and error variances for each popu-
lation i. Additional covariates that may influence the intrinsic growth rate include the number
of years that a population was observed, the average precipitation in summer, an interaction
between the two, and the average precipitation in winter. These covariates are treated as error
free and subsumed in a row vector zi.

Fitting a linear regression model E.yi/=β0 +βxxi + ziβz with highly dispersed independent
priors (normal with zero mean and inverse variance equal to 0.0001) on β0, βx and the compo-
nents of βz in INLA, but using the proxy wi instead of the true but unobserved xi, the absolute
value of the estimated slope parameter |β̂x| is attenuated (β̂x = −0:91; 95% credible interval
[−2:18, 0:36]). Indeed, after accounting for ME the effect of inbreeding on population growth
dynamics is more pronounced (β̂x =−1:82; 95% credible interval [−3:87, 0:13]).
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2.2. Influence of systolic blood pressure on coronary heart disease
The Framingham heart study is a large cohort study that aimed to understand the factors leading
to coronary heart disease and, in particular, to characterize the relationship to systolic blood
pressure SBP (Kannel et al., 1986). The outcome yi ∈{0, 1} is a binary indicator for presence or
absence of the disease and is modelled via a logistic regression. We analysed data from n=641
males that were originally presented in MacMahon et al. (1990). As in Carroll et al. (2006),
section 9.10, we use xi = log.SBPi − 50/ and a binary smoking status indicator zi ∈ {0, 1} as
predictors. The transformation of SBP, which was originally proposed by Cornfield (1962), has
also been used in Carroll et al. (1984, 1996, 2006). Since it is impossible to measure the long-
term SBP, measurements at single clinical visits had to be used as a proxy. Note that, owing to
daily variations or deviations in the measurement instrument, the single-visit measures might
considerably differ from the long-term blood pressure (Carroll et al., 2006). Hence, the ME in
SBP has been a concern for many years in this study. Importantly, the magnitude of the error
could be estimated, as SBP had been measured twice at different examinations. These proxy
measures for xi are denoted w1i and w2i. A naive approach ignoring ME would fit a logistic
regression against the indicator of coronary heart disease:

logit{Pr.yi =1/}=β0 +βxxi +βzzi,

where the true covariate xi is replaced by the centred mean of the two (suitably transformed) SBP-
measurements. We estimated this naive regression with INLA assigning independent normal
prior distributions with zero mean and precision (inverse variance) 0.01 to both the intercept β0
and the fixed effects βx and βz. The slope βx is attenuated in this naive regression (β̂x =1:66; 95%
credible interval [0:70, 2:63]) compared with the estimate that is obtained with error modelling
(β̂x =1:89; 95% credible interval [0:79, 3:01]).

2.3. Seedling growth across different light conditions
The impact of shading (dark, middle and light) and defoliation (0%, 25%, 50% and 75% reduc-
tion of leaf surface) on plant seedling growth in the Malaysian rainforest has been investigated
in a planned experiment that was described in Paine et al. (2012). The number of new leaves
per plant after a 4-months growth phase was counted and used as the response variable for
plant growth. Here, we analysed 60 seedlings from the species Shorea fallax, from which 20
plants were grown each under dark, middle and light shading conditions. There were five shade
houses for each of the three shading conditions, and each shade house contained four seedlings.
Each seedling in a shade house was exposed to a different degree of defoliation treatment: see
Fig. 1. In experimental studies in ecology, it is common practice that the value for the target
light intensity w (given in per cent and transformed to the log-scale) is assigned to all replicates
within a treatment class (i.e. dark, middle and light). However, owing to external conditions
the actual observed light availability x might considerably vary from the target value within
replicates. Therefore, the target light intensity takes only three different values (one for dark,
middle and light), whereas the actual light availability would be more variable and would take
15 different values (one for each shade house). This error structure is fundamentally different
from that of the preceding examples in Sections 2.1 and 2.2, where mismeasured covariates were
more variable than their error-free counterparts.

The selected regression model is Poisson with (log-) target light intensity as a proxy for the
actual observed light availability, and additional unstructured random effects to account for
potential overdispersion. In contrast with the preceding examples, where the inclusion of w
instead of x in the regression attenuates the parameter estimates, theory for log-linear models
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Fig. 1. Illustration of the shade house experiment: there were five shade houses per light condition and
each shade house contained four seedlings; the seedlings in a shade house were each exposed to a different
defoliation treatment, 0% indicating that the leaves had not been cut, 25% that a quarter of each leaf had
been cut, etc.

with such a Berkson error structure (see Section 3.3) suggests that there is no bias in the regression
coefficients (Carroll, 1989). However, it is not clear whether this result extends to models with
random effects.

3. Measurement error models in regression

3.1. The generalized linear model
Assume that we have n observations in a generalized linear model. The data are given as .y, z, x/,
with y = .y1, : : : , yn/T denoting the response, z = .z1, : : : , zp/ a covariate matrix of dimension
n×p for p error-free covariates and x = .x1, : : : , xn/T a single error prone covariate whose true
values are unobservable. The generalization to multiple independent error prone covariates is
straightforward. Suppose that y is of exponential family form with mean μi =E.yi|xi/, linked
to the linear predictor ηi via

μi =h.ηi/,

ηi =β0 +βxxi + z[i,]βz:
.1/

Here, h.·/ is a known monotonic inverse link (or response) function, β0 denotes the intercept,
βx the fixed effect for the error prone covariate x and z[i,] is 1 ×p with a corresponding vector
βz of fixed effects. This generalized linear model is extended to a GLMM by adding normally
distributed random effects on the linear predictor scale (1).

Let w = .w1, : : : , wn/T denote the observed version of the true, but unobserved, covariate x.
We distinguish two different ME processes: the classical error model and the Berkson error
model (Berkson, 1950). The graphical structure of these models is very similar (Fig. 2), but their
effects are fundamentally different.

3.2. Classical measurement error model
In the classical error model it is assumed that the covariate x can be observed only via a proxy
w, such that, in vector notation,

w =x +u,

with u= .u1, : : : , un/T. Throughout the paper the components of the error vector u are assumed
to be independent and normally distributed with mean 0 and variance τ−1

u , i.e. cov.ui, uj/= 0
for i �= j. Note that in what follows we parameterize the normal distribution with mean and
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Fig. 2. Graphical structure of the error models (note the change in direction of the arrow between x and
w): �, observed variables; �, unknown variables; !, classical error model; , Berkson error model

precision (or precision matrix in the multivariate context), rather than using the variance (or
covariance matrix). We assume that the error term u is independent of the true covariate x, but
also independent of any other covariates z and the response y. This implies a non-differential ME
model, meaning that y and w are conditionally independent given z and x. In most applications
this assumption is plausible as it implies that, given the true covariate x and covariates z, no
additional information about the response variable y is gained through w (Carroll et al., 2006).

More generally, the error structure can be heteroscedastic with wj ∼N .x, τuD/, where the
entries in the diagonal matrix D represent known weights di > 0: Heteroscedasticity is required
when xi can be measured with varying accuracy for different i. In fact, both the homoscedastic
and the heteroscedastic cases are relevant in practice (see, for example, Subar et al. (2001) or
the example in Section 5.1 presented here). Ideally, repeated measurements wij, j =1, : : : , Ji, of
the true value xi are available, so

wij|xi ∼N .xi, τu/: .2/

The repeated measurements wij are usually assumed to be conditionally independent and
may be unbalanced. For notational convenience we assume in what follows that no repeated
measurements are available, i.e. J1 = : : :=Jn =1.

Estimates of βx are usually attenuated in the classical ME setting if w is taken as a proxy for x.
Consider for instance the least squares estimates in a simple linear regression with homoscedastic
ME. Fitting the naive model y =βÅ

0 1 +βÅ
x w + εÅ instead of the true model y =β01 +βxx + ε

will result in |β̂Å

x| < |β̂x|, if the ME variance 1=τu is larger than 0. Another important effect is
the significant increase in the variability around the regression line.

3.3. Berkson measurement error model
Berkson-type error can be observed in experimental settings where the value of a covariate may
correspond to, for example, a predefined fixed dose, temperature or time interval, but the true
values x may deviate from these planned values w because of imprecision in the realization.
The second setting where Berkson-type error occurs is in epidemiological or biological studies,
where, for example, averages of exposures in areas are assigned to individuals living or work-
ing close by. Examples are the application of fixed doses of herbicides in bioassay experiments
(Rudemo et al., 1989) or the radiation epidemiology study that was described in Kerber et al.
(1993) and Simon et al. (1995). Such circumstances lead to the Berkson error model (Berkson,
1950)

x =w +u,

where u and w are independent, and

x|w ∼N .w, τuD/, .3/



Analysis of Measurements Error Models 237

with D denoting a diagonal matrix as in Section 3.2. As for classical ME, Berkson error is
assumed to be non-differential. The effect of Berkson error is fundamentally different from
that of classical error. In the linear regression model there is no attenuation effect, although
the residual precision suffers from the same qualitative bias as in the classical ME model.
Both the effects of classical and Berkson error in linear regression are illustrated in on-line
supplementary Fig. 1. Issues become more involved for generalized linear (mixed) models.
For instance, parameter estimates for logistic regression are only approximately consistent in the
Berkson case (Burr, 1988; Bateson and Wright, 2010), which makes error modellings essential.

The difference between classical and Berkson error is reflected in the relationships between
the error variances. Denote with τ−1

x and τ−1
w the variances of x and w respectively. Owing to

the independence assumption of x and u in the classical and between w and u in the Berkson
error case, the variances in the classical and Berkson ME models can be written respectively as

τ−1
w = τ−1

x + τ−1
u ,

τ−1
x = τ−1

w + τ−1
u :

Thus, the surrogate w is more variable than the true covariate x in the classical model, whereas
the opposite is true in the Berkson case.

4. Analysis of measurement error models by using the integrated nested
Laplace approximation approach

A Bayesian analysis of ME models dates back at least to Lindley and El-Sayyad (1968) and
has been further developed and popularized by Clayton (1992). This approach is based on a
three-level hierarchical model.

(a) The first level represents the observation model y|v, θ1 defining distributional assumptions
about the response variable y in dependence on some unknown (latent) parameters v and
certain hyperparameters θ1, e.g. variance or correlation parameters. Depending on the
error model, the surrogate covariate w may also be interpreted as part of the response (see
Sections 4.1 and 4.3) and the observation model must then be augmented accordingly.

(b) The second level describes the latent model or unobserved process v|θ2 depending on
hyperparameters θ2. Depending on the model, v is composed of different parameters; see
details outlined in Sections 4.1–4.3, where various ME models are discussed.

(c) In the third level, hyperpriors are defined for the hyperparameters θ= .θT
1 , θT

2 /T.

The posterior distribution of the unknowns v and θ is then given by

p.v, θ|y/∝p.y|v, θ/p.v|θ/p.θ/: .4/

Of primary interest are often the posterior marginal distributions for components vi of v,
as well as posterior marginals of the hyperparameters θj. The former can be derived from
expression (4) via

p.vi|y/=
∫

θ

∫
v−i

p.v, θ|y/dv−idθ, .5/

with v−i denoting the latent field without the ith component. The computation of massively
high integrals is, however, very difficult. Except for cases where everything can be computed
analytically, exact inference is challenging. Hence, sampling-based approaches have been the
standard tool (Gelfand and Smith, 1990).
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Rue et al. (2009) proposed the INLA, an efficient computing methodology based on suf-
ficiently accurate numerical approximations to perform Bayesian inference in a subclass of
hierarchical models, namely latent Gaussian models. In this class the second level, the latent
model, is assumed to be Gaussian.

INLA uses the fact that equation (5) can also be written as

p.vi|y/=
∫

θ
p.vi|θ, y/p.θ|y/dθ,

and it approximates this term by a finite sum

p̃.vi|y/=∑
k

p̃.vi|θk, y/ p̃.θk|y/Δk:

Here, p̃.vi|θ, y/ and p̃.θ|y/ denote approximations of p.vi|θ, y/ and p.θ|y/ respectively. For
p.θ|y/ a Laplace approximation is used, whereas for p.vi|θ, y/ three different strategies are
available; see Rue et al. (2009). The default is a simplified Laplace approximation. Finally, the
sum is computed over suitable support points θk with appropriate area weights Δk. The value of
Δk depends on the selection strategy of θk. If the points θk are laid out on a regular grid, say, all
points are equally weighted. The default integration scheme in INLA is the central composite
design strategy. Instead of laying out a dense grid of support points (grid strategy), only a limited
number of well-chosen points are used, which are laid out in a q-dimensional space. Here, q

denotes the number of hyperparameters, i.e. the dimension of θ. Using this strategy, a star-based
design is used where centre points are augmented with a group of axial or star points, which
allow the estimation of the curvature of p.θ|y/. For a graphical illustration see Fig. 1 in Martins
et al. (2013). For more details, we refer to Rue et al. (2009), section 6.5. Posterior marginals for
p.θj|y/ can be obtained similarly from p̃.θ|y/.

The R package r-inla can be downloaded from www.r-inla.org. Models are speci-
fied in a modular way, and thus different types of regression and error models can be freely
combined. Various types of random effects, such as independent or conditional auto-regressive
models to account for spatial structure, can be incorporated. As discussed in Rue et al. (2009)
and illustrated in a variety of applications, the approximation error of INLA is small compared
with the Monte Carlo error and is negligible in practice; see for example Paul et al. (2010),
Schrödle et al. (2011) and Riebler et al. (2012). In the following subsections we describe how
various ME models fit into the hierarchical structure that is required by INLA.

4.1. Classical measurement error—general case
Consider a generalized linear (mixed) model regressing a response variable y on covariates x
and z. The p covariates in z can be observed directly, whereas instead of x only a surrogate
w|x, θ ∼N .x, τuD/, following the classical error model (2), is available. The distribution of x,
possibly depending on z, is specified in the exposure model (Gustafson, 2004). In the most general
case considered here, the covariate x is Gaussian with mean depending on z, i.e.

x|z ∼N .α01+ zαz, τxI/: .6/

Here, α0 is the intercept, αz the p×1 vector of fixed effects and τ−1
x the residual variance in the

linear regression of x on z. If x depends only on certain components of z, the corresponding
entries in αz are set to 0. The extreme case αz = 0, where x is independent of z, is discussed
separately in Section 4.2.
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The assumption that the distribution of the unobserved x given the observed covariates z
follows a normal distribution is a prerequisite to apply INLA and often is justified. Because of
recent extensions of the INLA approach (see Martins and Rue (2012)), x|z could even follow
a non-Gaussian distribution, so the normal assumption might be relaxed in the future. We can
now formulate the latent Gaussian hierarchical model for classical ME.

(a) The observation model encompasses two components, namely the regression model and
the error model:

E.y|x/=h.β01+βxx + zβz/, .7/

w =x +u, u ∼N .0, τuD/: .8/

w is now part of the observation model, which is thus y, w|v, θ1 instead of y|v, θ1.
(b) The latent part contains the exposure model for x

x =α01+ zαz +εx, εx ∼N .0, τxI/, .9/

as well as the specification of independent Gaussian priors for the regression coefficients.
Thus the latent field is

v = .xT, β0, βT
z , α0, αT

z /T:

We use independent normal prior distributions with zero mean and small precision for
β0 and the components of βz. Further, we try to elicit the mean and precision of α0 and
αz by incorporating prior or expert knowledge about the distribution of x|z. Note also
that the exposure model (6) can be easily extended to include structured or unstructured
random effects.

(c) The third level describes the prior distributions for all hyperparameters

θ= .βx, τu, τx, θT
1 /T,

with θ1 representing (possible) hyperparameters of the likelihood. Noteworthy, the re-
gression coefficient βx is also considered as an unknown hyperparameter, and not as part
of the latent field (see the end of this section for an explanation). In our applications we
assume a normal distribution with mean 0 and low precision for βx. For τx and τu we
assume gamma distributions where the corresponding shape and scale parameters are
chosen on the basis of expert knowledge, but other prior distributions for τx and τu can
be used in INLA; see Roos and Held (2011) for an example.

To fit this model in INLA, the exposure model (9) is reformulated as

0 =−x +α01+ zαz +εx, εx ∼N .0, τxI/, .10/

so that it can also be interpreted as part of the observation model with pseudo-observations 0.
Equations (7), (8) and (10) then encode for the regression, error and exposure models respectively.
To analyse these three models jointly in INLA, the response variable y is augmented with the
observed values w of the ME model (8) and the pseudo 0s from equation (10).

The three components of the observation model may follow different likelihood functions, or
at least require a different specification of the hyperparameters. This is addressed by specifying
the following response matrix in r-inla, which contains one separate column per equation,
namely
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 NA NA
:::

:::
:::

yn NA NA
NA 0 NA

:::
:::

:::

NA 0 NA
NA NA w1

:::
:::

:::

NA NA wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, .11/

where ‘NA’ entries are ignored by INLA. Here, the first column follows the selected exponential
family distribution for the response y with mean (7). The second is assumed to be Gaussian
with hyperparameter τx; see expression (10). The third component is also Gaussian with hyper-
parameter τu, as specified in equation (8). If repeated measurements are available, the final block
of matrix (11) must be extended to include a row for each individual measurement.

Product structures of two unknown parameters, such as βxx in equation (7), are generally
not supported in INLA, because of the inherent requirement that the latent field v must be
Gaussian. Even if βx and x are assumed to be normally distributed, their product is not. As a
consequence the latent field v would not be Gaussian if βxx is included directly as part of v, and
the approximations that are used throughout the INLA methodology would not be accurate;
see Martins and Rue (2012). To incorporate product structures, one of the factors, say βx, must
be treated as a hyperparameter, i.e. an element of θ, so that conditionally on βx the latent field is
still Gaussian. In the context of ME models as specified here, x appears in all three components
(7), (8) and (10) of the observation model. This allows us to use the so-called copy option that
is available in INLA, which was implemented to use the same random field (here x) multiple
times, possibly with different scalings (here βxx). The unknown regression coefficient βx is no
longer a component of the latent field v, but a scaling parameter, i.e. hyperparameter, of x.

In practice, an identical copy xÅ of βxx is created, which is then used in equation (7) as a
replacement for βxx. This is achieved by extending the latent vector x to xc = .xT, xÅT/T with
π.xc|βx/=p.x/p.xÅ|x, βx/ and

p.xÅ|x, βx/∝ exp
{

− τ

2
.xÅ −βxx/T.xÅ −βxx/

}
:

The precision τ , fixed to some large value, controls the similarity between xÅ and βxx (default
value 109). The regression coefficient βx is treated as unknown, and thus as a hyperparameter
of the model. This is in contrast with other applications where the respective coefficient is often
fixed to 1 (Martins et al., 2013). With the extension of x to xc, the latent field v is necessarily
extended. However, since we condition on βx instead of treating it as a component of the latent
field, the latent Gaussian condition is not violated. Posterior marginal distributions for x, a
component of v, and βx, a component of θ, are derived as outlined in Section 4. For exact
specification within r-inla, see the application in Section 5.2 and the corresponding section
in the on-line supplementary material.

4.2. Classical measurement error—independent exposure model
To facilitate the use of simple ME structures in INLA, we provide a specific ME model which
does not require the specification of a joint model. The new class covers the case where the
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exposure model (6) for x does not depend on the other (error-free) covariates z, i.e.

x ∼N .α01, τxI/:

The derivation of the model is sketched in what follows and its use is shown in Section 5.1 and
in the corresponding section of the on-line supplementary material.

Without loss of generality, we omit the parameters β0 and βz in equation (7) and consider
the simplified model

E.y|x/=h.βxx/, .12/

x =α01+εx, εx ∼N .0, τxI/,

w =x +u, u ∼N .0, τuD/:

Here, α0 is also considered a hyperparameter (see the explanation below); thus the latent field
v now consists of only x, and θ = .βx, τx, τu, α0, θT

1 /T, where θ1 may again contain additional
hyperparameters of the likelihood. The posterior distribution of x and θ is then

p.x, θ|y, w/∝p.θ/p.x|θ/p.w|x, θ/p.y|x, θ/

∝p.θ/p.x|w, θ/p.w|θ/p.y|x, θ/,

using that p.x|θ/p.w|x, θ/=p.x|w, θ/p.w|θ/. Now

w|θ ∼ N [α01, {.τuD/−1 + .τxI/−1}−1]

and

p.x|w, θ/∝ p.x|θ/p.w|x, θ/

∝ exp
{

− τx

2
.x −α01/T.x −α01/− τu

2
.x −w/TD.x −w/

}
:

Combining these quadratic forms gives

x|w, θ ∼ N{.τxα01+ τuDw/.τxI + τuD/−1, τxI + τuD},
so the posterior distribution p.x, θ|y, w/ can be evaluated explicitly. An alternative formulation
is obtained by considering ν =βxx instead of x, where

ν|w, θ ∼ N
{

βx.τxα01+ τuDw/.τxI + τuD/−1,
τxI + τuD

β2
x

}
: .13/

This model is termed ‘mec’ within r-inla and has four hyperparameters: βx, τx, τu and α0.
Note that α0, which was originally part of the latent field in Section 4.1, now directly enters
distribution (13) and is now a hyperparameter of the mec model. This formulation leads to a
considerable simplification of the r-inla call; see the on-line supplementary material for code
examples.

4.3. Berkson measurement error
We again consider a generalized linear (mixed) model (1) but replace the classical error (2) by a
Berkson error (3):

x|w, θ∼N .w, τuD/:
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Since x is defined conditionally on the observations w, the exposure model (6) is obsolete. The
latent Gaussian hierarchical model for Berkson ME is thus given by

(a) the observation model, which contains only the regression model

E.y|x/=h.β01+βxx + zβz/,

(b) the latent field, given by v = .xT, β0, βT
z /T with Gaussian priors and the error model

x =w +u, u ∼N .0, τuD/,

(c) the hyperparameters θ = .βx, τu, θT
1 /T, where the error precision τu is given a suitable

gamma and the coefficient βx a Gaussian prior, and θ1 representing (possible) hyper-
parameters of the likelihood.

Analogously to Section 4.2, where x did not depend on the other covariates z, we can define a
latent Gaussian model for the Berkson ME model. Indeed, the same simplifications as in model
(12) lead to the hierarchical model

E.y|x/=h.βxx/,

x =w +u, u ∼N .0, τuD/:

Again, v =x is the latent field, and the hyperparameters are θ= .βx, τu, θT
1 /T. Importantly, the

latent model x|w, θ does now exactly correspond to the error model. It is thus straightforward
to calculate the posterior distribution

p.x, θ|y, w/∝p.θ/p.x|w, θ/p.y|x, θ/:

The reparameterization ν =βxx is again useful and leads to

ν|w, θ ∼ N
(

βxw,
τu

β2
x

D
)

:

This model is termed ‘meb’ within the R package r-inla and has as hyperparameters βx and
τu.

As in Section 4.1, a joint model formulation can also be used for Berkson ME models.
However, here it does not add to the generality of the model specification as no exposure model
is involved. Thus, we recommend the use of the meb model and just illustrate the analogous
formulation for completeness. After rewriting the error model similarly to equation (10), the
respective joint model contains only the two components

E.y|x/= h.β01+βxx + zβz/,

−w =−x +u, u ∼N .0, τuD/,

and the response matrix simplifies to ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1 NA
:::

:::

yn NA
NA −w1

:::
:::

NA −wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:

As in Section 4.1, the copy feature is employed to fit this model in INLA.
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5. Applications

In what follows we demonstrate how to define the different ME applications that were introduced
in Section 2. The results that are presented are based on the r-inla version updated on
December 4th, 2013, and the r-inla code for all examples is given in the on-line supplementary
material. A comparison of the results that were obtained by INLA with those obtained by an
independent MCMC implementation is provided for each application to underline the accuracy
of INLA. We centre all continuous covariates at zero in the following analyses, as otherwise the
efficiency of the MCMC method might be reduced (Gelfand et al., 1995, 1996), and additional
adjustments of the default parameters in the numerical optimization routine of INLA might be
needed.

5.1. Inbreeding in Swiss ibex populations
The ibex data that were introduced in Section 2.1 were analysed by using a linear model with
classical heteroscedastic error variances. The observation model is

y|x ∼N .β01+βxx + zβz, τ"I/

with y denoting the intrinsic growth rates, x the inbreeding coefficients of the populations and
z the matrix of additional covariates, as listed in Section 2.1. The level of inbreeding xi in
population i= 1, : : : , 26 was estimated as wi from a Bayesian analysis, which, as a by-product,
also provided an estimated population-specific error precision τ̂ui . Since larger values of w
have more uncertainty, i.e. smaller precision, as shown in Fig. 3, it is natural to formulate a
heteroscedastic classical error model

w|x ∼N .x, τuD/

with entries τ̂ui in the diagonal matrix D. Since x is assumed to be uncorrelated with the covari-
ates z, the exposure model (6) reduces to

x ∼N .α01, τxI/:

Here, α0 = 0 was fixed because of the preceding covariate centring. Note that the range of x
(before centring) is limited to the interval [0, 1], which may be in conflict with the normality
assumption for small precision τx. To make sure that this is not a critical point here, we ran

w

τ u

−0.05 0.00 0.05

20
00

60
00

10
00

0
14

00
0

Fig. 3. Uncertainty in the covariate x in the ibex study, depending on the estimate w: larger values can be
estimated with less precision (i.e. with larger variance 1=τu)
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an identical analysis with a normal distribution truncated to [0, 1], using otherwise the same
parameters, and obtained virtually identical results. The unknowns in this example are the latent
field v = .xT, β0, βT

z /T and the hyperparameters θ = .βx, τu, τx, τ"/
T. We assigned independent

N .0, 10−4/ priors to all β-coefficients. The assignment of the prior distributions to the precision
parameters is more delicate. We used gamma distributions, where the corresponding shape and
rate parameters were chosen on the basis of expert or prior knowledge. In practice, the inbreeding
coefficient x of sexually breeding species is not observed over the whole theoretical range [0, 1].
For populations of similar age and size to those in the current study, x-values are expected
to lie within [0, 0:45] (Biebach and Keller, 2010). Assuming a uniform distribution within this
range, this corresponds to the precision 12=0:452 ≈ 59, which we take as a lower limit for τx.
In the absence of prior knowledge from other studies, we assume that the difference between
the largest and the smallest value of x is at least 0:05, which gives an upper limit of 4800, again
assuming a uniform distribution. The parameters of the corresponding gamma distribution
with 2:5% quantile at 59 and 97:5% quantile at 4800 are determined by numerical optimization
and subsequent rounding, leading to a G.1:194, 0:00085/ prior for τx.

The precision τu represents a possible multiplicative bias in the estimates τ̂ui . Here, we assume
that this bias is between 0:5 and 2 with probability 0:95, leading to G.8:5, 7:5/. To obtain a lower
bound for the prior of τ" we assumed a uniform distribution of y in [0, 1], because populations are
usually growing in the absence of density-dependent effects (y >0) and their growth is bounded
by the number of offspring per animal and year (here y <1). As upper limit we used 100 divided
by the sample variance of y, so the coefficient of determination is R2 =0:99. Using these values
as 2.5% and 97.5% quantiles, we obtain a G.0:903, 0:0014/ prior distribution for τ".

An MCMC simulation was run for 100000 iterations with a burn-in of 10000 iterations and
a saving frequency of 10. Hereby, the estimates that were obtained from INLA were chosen
as starting values. Convergence was visually checked. An excellent agreement between MCMC
samples and the posterior marginals of INLA can be seen in on-line supplementary Fig. 2.
The parameter estimates are graphically compared with the naive Bayesian analysis in Fig. 4,
including w instead of x and using the same priors for the respective parameters. The absolute
value of the slope |βx| and the residual precision τ" are underestimated in this naive regression,
as predicted by the theory. The other parameters are much less affected by the error in x.

5.2. Influence of systolic blood pressure on coronary heart disease
The outcome yi ∈ {0, 1} in this study is an indicator for coronary heart disease, assumed to
be Bernoulli distributed. The observation model is logistic, using an indicator for smoking, z,
and the transformed (unobserved) long-term blood pressure x = log.SBP − 50/ as binary and
continuous covariates respectively. Hence, the linear predictor is

logit{E.y|x/}=β01+βxx +βzz:

Since SBP has been measured at two different examinations, the magnitude of the ME of these
surrogate measures can be quantified. Here, we assume that the repeated measurements w1 =
.w11, : : : , wn1/T and w2 = .w12, : : : , wn2/T at examinations 1 and 2 respectively are independent
and normally distributed with mean x and precision τu, leading to the classical homoscedastic
error model

wj|x ∼N .x, τuI/, j =1, 2:
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Finally, the exposure model (6) comes in its most general form

x|z ∼N .α01+αzz, τxI/:

The latent field in this model is v = .xT, β0, βz, α0, αz/
T, and the hyperparameters are θ =

.βx, τu, τx/T.
For β0, βx and βz we assigned independent N .0, 10−2/ priors. The remaining prior distri-

butions are specified on the basis of subject matter considerations. We assume that 90 mm Hg
and 180 mm Hg can be regarded as the respective 2:5% and 97:5% quantile of SBP, and that
SBP − 50 ∼ LogNormal.μ, σ2/. Through optimization we determined μ≈ 4:3 and σ2 ≈ 0:1, so
that the log-normal distribution has the desired quantiles. Consequently, we used 1=σ2 as ex-
pected value for τx. Assuming equal mean and variance for τx we specified τx ∼ G.10, 1/, and
further α0 ∼N .0, 1/, whereas μ=0 is used instead of μ=4:3 because of the centring of w1 and
w2. Rothe and Kim (1980) found the ME of SBP to be as much as 20 mm Hg, meaning that our
assumed mean SBP of 135 mm Hg varies between 115 and 155. This corresponds to an error
factor of 1.15, from which we derive an expected value of approximately 100 for τu. Assuming
again equal mean and variance of the prior for the precision, we set τu ∼G.100, 1/. For αz we
assume a mean of 0, and set αz ∼N .0, 1/. Note that these prior specifications might deviate
from the reference example in Carroll et al. (2006), where the exact parameters were not given
in the text. Furthermore, Carroll et al. (2006) used the quantity Δ := τx=τu instead of τu and
gave it a uniform prior in the interval .0, 0:5/. Since this is not straightforward with INLA, the
model was modified as described.

To obtain posterior marginals with MCMC sampling, regression coefficients of generalized
linear models cannot directly be sampled from a standard full conditional distribution. Here,
samples for the regression coefficients β = .β0, βx, βz/ were obtained on the basis of the block
sampling algorithm by Gamerman (1997). This approach uses transition densities that combine
the weighted least squares method with a prior on β (McCullagh and Nelder, 1989; West, 1985).
The full conditionals for all unknowns are given in section 3.1 of the on-line supplementary
material. The simulation was run for 100000 iterations with a burn-in of 10000, and every fifth
value was saved. Starting values for α and β were chosen from the INLA output. For τu and
τx, the means of their respective prior distribution were used as initial estimates.

The agreement between the MCMC and INLA output is almost perfect; see on-line supple-
mentary Fig. 3. Fig. 5 shows parameter estimates for βx and βz obtained by the naive regression
model including w1 and w2 instead of x, and four error correction approaches. Carroll et al.

ME.INLA

MCMC

C.MCMC

C.ML

NAIVE

0.5 1.0 1.5 2.0
(a) (b)

2.5 3.0 0.0 0.5 1.0

Fig. 5. Posterior means and 95% credible intervals for the Framingham data analysis (for NAIVE, MCMC
and the error-corrected analysis ME.INLA, posterior means are used as point estimates; C.MCMC and C.ML
denote the Bayesian and the maximum likelihood analyses that were conducted in Carroll et al. (2006); the
broken vertical lines indicate the naive Bayesian estimates without error modelling): (a) βx ; (b) βz
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Fig. 6. Histograms of the 10000 posterior means from the bootstrap simulation with INLA, compared with
the posterior marginal densities from the INLA analysis using the original data ( ): (a) βx ; (b) βz

(2006) used an ME model fitted via a maximum likelihood method and a Bayesian approach
using MCMC sampling, denoted here as methods C.ML and C.MCMC. The fourth and fifth
rows show the results that were obtained by our MCMC implementation and INLA. All error-
corrected estimates and the credible intervals are similar. Although the coefficient βz of the
error-free measured smoking status seems unbiased, the effect of systolic blood pressure is
clearly attenuated in the naive analysis. Adjusting for ME leads to a more pronounced effect,
as expected, however, with a larger assigned uncertainty.

In practice, MCMC techniques are commonly applied via easy-to-use software such as
BUGS or JAGS. Code length to implement the current model in JAGS is similar to the INLA
call. To give a fairer comparison of the methods, we thus also ran JAGS via the R interface
rjags, similarly to the analysis that was presented in Carroll et al. (2006). The simulation
of the 110000 iterations including the burn-in finished in 6 min 45 s, whereas INLA required
2.6 s on the same IntelCore i7-2640M 2.80 GHz processor.

It is often of interest to study frequentist properties of Bayesian estimates (Bayarri and Berger,
2004). To do so, we performed a non-parametric bootstrap simulation, iteratively sampling
n = 641 observations with replacement from the n = 641 distinct data records of the original
data set. ME model fitting was carried out iteratively with INLA, and posterior means of βx

and βz were stored after each run. Priors were kept as in the original analysis. We did 10000
bootstrap iterations, which took less than 8 h in total. Histograms of the posterior mean esti-
mates of βx and βz are shown in Fig. 6, together with the posterior marginals from the INLA
analysis using the original data (the curves). Importantly, the distributions are in very good
agreement, not only for the coefficient βz of the error-free covariate, but also for βx, the re-
gression coefficient of the mismeasured covariate x. This small simulation study thus illustrates
excellent frequentist properties of the Bayesian estimates, as well as computational robustness
and efficiency of INLA.

5.3. Seedling growth across different light conditions
Let y denote the number of new leaves per plant after a 4-months growth phase. The covariate
z denotes the degree of defoliation and x = log.%light/ the (transformed) light intensity, where
w is the target value. Using w instead of x in the analysis leads to the homoscedastic Berkson
error with

x|w ∼N .w, τuI/:
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In what follows we centred both covariates w and z. The nested design of the study, as described
in Section 2.3, naturally leads to a Poisson regression model. To account for overdispersion,
independent normal random effects γijk ∼N .0, τγ/ were added, extending the generalized linear
model to a GLMM:

log{E.yijk|xij, γijk/}=β0 +βxxij +βzzk +γijk,

with i=1, 2, 3 denoting the light condition, j =1, : : : , 5 the shade house per light condition and
k =1, : : : , 4 the degrees of defoliation. The unknowns are v = .xT, β0, βz/

T and θ= .βx, τu, τγ/T.
The β-parameters were assigned independent N .0, 10−2/ priors, and the overdispersion pre-

cision τγ a highly dispersed but proper G.1, 0:005/ prior with mean 200. For the error precision
τu it was assumed that the actual light values x do not interfere with the target values w from
other light levels. The (centred and log-transformed) target light values are 1.22, 0.10 and −1:32
for dark, middle and light conditions; thus the interval between middle and light measurements
is 1.42. Interpreting this as one branch of a 95% confidence interval of a Gaussian variable, we
obtain σu = 1:42=1:96 = 0:72, yielding a lower bound for τu of 1=0:722 = 1:93. For the upper
bound a tenth of the variation is assumed, leading to an upper limit of 1=0:0722 = 193. The
gamma prior distribution with the 2.5% and 97.5% quantiles is τu ∼G.1:12, 0:0203/.

The results from the regression in INLA were compared with an MCMC run with 100000
iterations, a burn-in of 10000 and a saving frequency of 10. Sampling was based on a reparame-
terization as proposed by Besag et al. (1995), where all except one full conditional distributions
are standard and can be Gibbs sampled. The MCMC samples and posterior marginals fit very
well; see on-line supplementary Fig. 4. The parameter estimates from the naive analysis includ-
ing w and the error-corrected estimates of INLA are shown in Fig. 7. Our results did not reveal
a difference in the regression coefficients after accounting for ME, yet there is a small bias in
the precision of the random effect τγ . Moreover, the lengths of the credible intervals for β0,
βx and τγ are slightly increased. Note that the same framework as presented here can be used
for logistic regression models, where Berkson error is known to cause bias in the parameter
estimates (Burr, 1988; Bateson and Wright, 2010).

6. Discussion

ME in covariates may lead to serious biases in parameter estimates and confidence intervals
of statistical models. A variety of approaches to model such error have been proposed in re-
cent decades, among which Bayesian methods probably provide the most flexible framework.
Bayesian treatments, employing MCMC samplers, have been successfully applied for more than
20 years, but their application has never become part of standard regression analyses.

The aim of this work was to illustrate how the most common ME models (classical and Berk-
son error) can be included in GLMMs by using the recently proposed INLA framework, which
gives fast and accurate approximations instead of doing any sampling. The R code provided
should help to make such models accessible to a broader audience. Note that INLA provides a
much larger variety of likelihood functions and latent models than we could illustrate here, and
the modular structure adds to the flexibility. It is, for instance, straightforward to handle multi-
ple independent mismeasured covariates, to introduce a systematic bias into the error model or
to include any structured random term. Gaussian classical and Berkson error naturally fit into
the INLA framework of latent Gaussian models, and thus the error prone covariates that were
used here are always continuous.

The treatment of more general error models is also possible. For instance, the linear regres-
sion error ε might be correlated with the error u in a covariate. Another interesting application,
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which is relevant for example in ecology, is the use of non-Gaussian error models, e.g. a Poisson
or negative binomial model where, instead of the true and positive (but unobserved) continuous
covariate x, a discrete proxy w with mean x is observed. More general models are also useful,
e.g. a log-linear model with mean E.w/=axβx or a logistic model for binomial proxies; see for
example Bagchi et al. (2014). Furthermore, it might not always be appropriate to assume that
the components of x are independent and identically distributed. Hence, x could follow a more
complex Gaussian Markov random-field structure (Rue and Held, 2005) to account for temporal
and/or spatial dependences; see Bernardinelli et al. (1997) for such a formulation in an epidemi-
ological context. Both of these extensions can be handled with INLA. Another direct extension
concerns additive (possibly heteroscedastic) error in the response, which is also known as equa-
tion error. This has been discussed in linear regression (Fuller, 1987; Buonaccorsi, 2010), and
Bayesian inference has been proposed (Kelly, 2007; Andreson and Hurn, 2013; deCastro et al.,
2013). The treatment in INLA is possible by adding random effects to the regression equation.

One of the biggest challenges with mismeasured variables is the estimation of the error vari-
ance, either from repeated measurements, instrumental variables or from previous studies. The
advantage of a Bayesian approach, as taken here, is that uncertainty of such estimates can be au-
tomatically incorporated in prior distributions, which has been shown to be more beneficial than
fixing the error variance at a best guess value (Gustafson, 2005). Even if nothing is known and a
flat prior is used, Gustafson (2005) has shown that there can be a surprising amount of indirect
learning. However, it is questionable whether ME modelling makes sense in the absence of prior
knowledge about the error variance, the more so because the model might not be identifiable.

7. Supplementary material

For brevity, the R code for all the examples that are presented here is described in detail in the
on-line supplementary document. Furthermore, this document contains full conditionals and
posterior marginals for Section 5.2. On www.r-inla.org/examples/case-studies/
muff-etal-2014 selected data and R code are provided to download.
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